Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.26.23297608

ABSTRACT

BackgroundUnderstanding underlying mechanisms of heterogeneity in test-seeking and reporting behaviour can help to protect the vulnerable and guide equity-driven interventions. Using COVID-19 testing data for England and data from community prevalence surveillance surveys (REACT-1 and ONS-CIS) from October 2020 to March 2022, we investigated the relationship between sociodemographic factors and testing behaviours in England. MethodsWe used mass testing data for lateral flow device (LFD; data for 290 million tests performed and reported) and polymerase chain reaction (PCR) (data for 107 million tests performed and returned from the laboratory) tests made available for the general public, provided by date, self-reported age and ethnicity at lower tier local authority (LTLA) level. Using a mechanistic causal model to debias the PCR testing data, we obtained estimates of weekly SARS-CoV-2 prevalence by self-reported ethnic groups and age groups for LTLAs in England. This approach to debiasing the PCR (or LFD) testing data also estimated a testing bias parameter defined as the odds of testing in infected versus not infected individuals, which would be close to zero if the likelihood of test seeking (or seeking and reporting) was the same regardless of infection status. Using confirmatory PCR data, we estimated false positivity rates, sensitivity, specificity, and the rate of decline in detection probability by PCR by sociodemographic groups. We also estimated the daily incidence allowing us to determine the fraction of cases captured by the testing programme. FindingsFrom March 2021 onwards, individuals in the most deprived regions reported approximately half as many LFD tests per-capita than those in the least deprived areas (Median ratio [Inter quartile range, IQR]: 0{middle dot}50 [0{middle dot}44, 0{middle dot}54]). During October 2020 - June 2021, PCR testing patterns were in the opposite direction (Median ratio [IQR]: 1{middle dot}8 [1{middle dot}7, 1{middle dot}9]). Infection prevalences in Asian or Asian British communities were considerably higher than those of other ethnic groups during the Alpha and Omicron BA.1 waves. Our estimates indicate that the England COVID-19 testing program detected 26% - 40% of all cases (including asymptomatic cases) over the study period with no consistent differences by deprivation levels or ethnic groups. PCR testing biases were generally higher than for LFDs, which was in line with the general policy of symptomatic and asymptomatic use of these tests. During the invasion phases of the Delta and Omicron variants of concern, the PCR testing bias in the most deprived populations was roughly double (ratio: 2{middle dot}2 and 2{middle dot}7 respectively) that in the least. We also determined that ethnic minorities and older individuals were less likely to use confirmatory PCR tests through most of the pandemic and that there was possibly a longer delay in reporting a positive LFD test in the Black populations. InterpretationDifferences in testing behaviours across sociodemographic groups may be reflective of the relatively higher costs of self-isolation to vulnerable populations, differences in test accessibility, digital literacy, and differing perception about the utility of tests and risks posed by infection. Our work shows how mass testing data can be used in conjunction with surveillance surveys to identify gaps in the uptake of public health interventions at fine scale levels and by sociodemographic groups. It provides a framework for monitoring local interventions and yields valuable lessons for policy makers in ensuring an equitable response to future pandemics. FundingUK Health Security Agency.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.29.23296330

ABSTRACT

Background The protection of fourth dose mRNA vaccination against SARS-CoV-2 is relevant to current global policy decisions regarding ongoing booster roll-out. We estimate the effect of fourth dose vaccination, prior infection, and duration of PCR positivity in a highly-vaccinated and largely prior-COVID-19 infected cohort of UK healthcare workers. Methods Participants underwent fortnightly PCR and regular antibody testing for SARS-CoV-2 and completed symptoms questionnaires. A multi-state model was used to estimate vaccine effectiveness (VE) against infection from a fourth dose compared to a waned third dose, with protection from prior infection and duration of PCR positivity jointly estimated. Results 1,298 infections were detected among 9,560 individuals under active follow-up between September 2022 and March 2023. Compared to a waned third dose, fourth dose VE was 13.1% (95%CI 0.9 to 23.8) overall; 24.0% (95%CI 8.5 to 36.8) in the first two months post-vaccination, reducing to 10.3% (95%CI -11.4 to 27.8) and 1.7% (95%CI -17.0 to 17.4) at 2-4 and 4-6 months, respectively. Relative to an infection >2 years ago and controlling for vaccination, 63.6% (95%CI 46.9 to 75.0) and 29.1% (95%CI 3.8 to 43.1) greater protection against infection was estimated for an infection within the past 0-6, and 6-12 months, respectively. A fourth dose was associated with greater protection against asymptomatic infection than symptomatic infection, whilst prior infection independently provided more protection against symptomatic infection, particularly if the infection had occurred within the previous 6 months. Duration of PCR positivity was significantly lower for asymptomatic compared to symptomatic infection. Conclusions Despite rapid waning of protection, vaccine boosters remain an important tool in responding to the dynamic COVID-19 landscape; boosting population immunity in advance of periods of anticipated pressure, such as surging infection rates or emerging variants of concern. Funding UK Health Security Agency, Medical Research Council, NIHR HPRU Oxford, and others.


Subject(s)
COVID-19
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.09.19.23295789

ABSTRACT

IntroductionDuring the COVID-19 pandemic, extensive research was conducted on SARS-CoV-2, however important questions about other respiratory pathogens remain unanswered. A severe influenza season in 2022-2023 with simultaneous circulation of SARS-CoV2 and Respiratory Syncytial Virus (RSV) is anticipated. This sub-study aims to determine the incidence and impact of these respiratory viruses on healthcare workers (HCW), the symptoms they experienced, the effectiveness of both COVID-19 and influenza vaccination and the burden of these infections on the National Health Service (NHS) workforce. Methods and analysisThis is a longitudinal prospective cohort sub-study, utilising the population and infrastructure of SIREN, which focuses on hospital staff in the UK. Participants undergo fortnightly Nucleic Acid Amplification Testing (NAAT) on a multiplex assay including SARS-CoV-2, Influenza A&B and RSV, regardless of symptoms. Questionnaires are completed every two weeks, capturing symptoms, sick days, exposures, and vaccination records. Serum samples are collected monthly or quarterly from participants associated with a SIREN site. This sub-study commenced on 28/11/22 to align with the predicted influenza season and participants influenza vaccine status. The SIREN Participant Involvement Panel (PIP) shaped the aims and methods for the study, highlighting its acceptability. UK Devolved Administrations were supported to develop local protocols. Analysis plans include incidence of asymptomatic and symptomatic infection, comparisons of vaccination coverage; assessment of sick day burden, and effectiveness of seasonal influenza against infection and time off work. Data are also integrated into UKHSA nosocomial modelling. Ethics and disseminationThe protocol was approved by the Berkshire Research Ethics Committee (IRAS ID 284460, REC Reference 20SC0230) on 14/11/2022. Participants were informed in advance. As the frequency and method of sampling remained the same, implied consent processes were approved by the committee. Participants returning to the study give informed consent. Regular reports to advisory groups and peer-reviewed publications are planned to disseminate findings and inform decision making. Trial registration number: ISRCTN11041050. Strengths and limitations of this study- The positioning of this sub-study, led by public health agencies in collaboration with a network of NHS sites, facilitates horizon scanning enabling rapid adaptation of the study protocol and deployment to conduct relevant scientific research in a cohort of healthcare workers - To achieve target recruitment, deployment of a new postal pathway is underway, allowing for more direct communication between the central research team and participants - The multi-disciplinary partnerships including a network of academic centres established and embedded by SIREN can now be leveraged and extended to explore Flu and RSV - Decentralised study delivery, with testing at a network of NHS sites has both strengths and limitations. This includes enabling more in-depth relationships and communications between participants and their local research teams, however, introduce additional communication, governance, and data sharing requirements. - Some demographics are over-represented such as female staff, nurses and doctors, and some are under-represented such as staff from ethnic minorities, porters and estates. This is partly the consequence of a rapid recruitment drive at the beginning of the COVID-19 pandemic.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections
4.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.22.23290197

ABSTRACT

Third doses of COVID-19 vaccines were widely deployed following primary vaccine course waning and emergence of the Omicron-variant. We investigated protection from third-dose vaccines and previous infection against SARS-CoV-2 infection during Delta-variant and Omicron-variant (BA.1 & BA.2) waves in our frequently PCR-tested cohort of healthcare-workers. Relative effectiveness of BNT162b2 third doses and infection-acquired immunity was assessed by comparing the time to PCR-confirmed infection in boosted participants with those with waned dose-2 protection ([≥]254 days after dose-2). Follow-up time was divided by dominant circulating variant: Delta 07 September 2021 to 30 November 2021, Omicron 13 December 2021 to 28 February 2022. We used a Cox regression model with adjustment/stratification for demographic characteristics and staff-type. We explored protection associated with vaccination, infection and both. We included 19,614 participants, 29% previously infected. There were 278 primary infections (4 per 10,000 person-days of follow-up) and 85 reinfections (0.8/10,000 person-days) during the Delta period and 2467 primary infections (43/10,000 person-days) and 881 reinfections (33/10,000) during the Omicron period. Relative Vaccine Effectiveness (VE) 0-2 months post-3rd dose (V3) (3-doses BNT162b2) in the previously uninfected cohort against Delta infections was 63% (95% Confidence Interval (CI) 40%-77%) and was lower (35%) against Omicron infection (95% CI 21%-47%). For primary course ChAdOX1 recipients, BNT162b2 heterologous third doses were especially effective, with VE 0-2 months post-V3 over [≥]68% higher for both variants. Third-dose protection waned rapidly against Omicron, with no significant difference between two and three BNT162b2 doses observed after 4-months. Previous infection continued to provide additional protection against Omicron (67% (CI 56%-75%) 3-6 months post-infection), but this waned to about 25% after 9-months, approximately three times lower than against Delta. Infection rates surged with Omicron emergence. Third doses of BNT162b2 vaccine provided short-term protection, with rapid waning against Omicron infections. Protection associated with infections incurred before Omicron was markedly diminished against the Omicron wave. Our findings demonstrate the complexity of an evolving pandemic with potential emergence of immune-escape variants and the importance of continued monitoring.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
5.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.16.23285748

ABSTRACT

T cell correlates of protection against SARS-CoV-2 infection after vaccination ('vaccine breakthrough') are incompletely defined, especially the specific contributions of CD4+ and CD8+ T cells. We studied 279 volunteers in the Protective Immunity from T Cells in Healthcare Workers (PITCH) UK study, including 32 cases (with SARS-CoV-2 positive testing after two vaccine doses during the Delta-dominant era) and 247 controls (no positive test nor anti-nucleocapsid seroconversion during this period). 28 days after second vaccination, before all breakthroughs occurred, cases had lower ancestral S- and RBD-specific immunoglobulin G titres and S1- and S2-specific T cell interferon gamma (IFN{gamma}) responses compared with controls. In a subset of matched cases and controls, cases had lower CD4+ and CD8+ IFN{gamma} and tumour necrosis factor responses to Delta S peptides with reduced CD8+ responses to Delta versus ancestral peptides compared with controls. Our findings support a protective role for T cells against Delta breakthrough infection.


Subject(s)
Necrosis , Breakthrough Pain , COVID-19
6.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.28.23285084

ABSTRACT

Pronounced immune escape by the SARS-CoV-2 Omicron variant has resulted in large numbers of individuals with hybrid immunity, generated through a combination of vaccination and infection. Based primarily on circulating neutralizing antibody (NAb) data, concerns have been raised that omicron breakthrough infections in triple-vaccinated individuals result in poor induction of omicron-specific immunity, and that a history of prior SARS-CoV-2 in particular is associated with profound immune dampening. Taking a broader and comprehensive approach, we characterized mucosal and blood immunity to both spike and non-spike antigens following BA.1/BA.2 infections in triple mRNA-vaccinated individuals, with and without a history of previous SARS-CoV-2 infection. We find that the majority of individuals increase BA.1/BA.2/BA.5-specific NAb following infection, but confirm that the magnitude of increase and post-omicron titres are indeed higher in those who were infection-naive. In contrast, significant increases in nasal antibody responses are seen regardless of prior infection history, including neutralizing activity against BA.5 spike. Spike-specific T cells increase only in infection-naive vaccinees; however, post-omicron T cell responses are still significantly higher in previously-infected individuals, who appear to have maximally induced responses with a CD8+ phenotype of high cytotoxic potential after their 3rd mRNA vaccine dose. Antibody and T cell responses to non-spike antigens also increase significantly regardless of prior infection status, with a boost seen in previously-infected individuals to immunity primed by their first infection. These findings suggest that hybrid immunity induced by omicron breakthrough infections is highly dynamic, complex, and compartmentalised, with significant immune enhancement that can help protect against COVID-19 caused by future omicron variants.


Subject(s)
Breakthrough Pain , COVID-19 , Status Epilepticus
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.29.22282899

ABSTRACT

Background Antigen lateral flow devices (LFDs) have been widely used to control SARS-CoV-2. Changes in LFD sensitivity and detection of infectious individuals during the pandemic with successive variants, vaccination, and changes in LFD use are incompletely understood. Methods Paired LFD and PCR tests were collected from asymptomatic and symptomatic participants, across multiple settings in the UK between 04-November-2020 and 21-March-2022. Multivariable logistic regression was used to analyse LFD sensitivity and specificity, adjusting for viral load, LFD manufacturer, setting, age, sex, assistance, symptoms, vaccination, and variant. National contact tracing data were used to estimate the proportion of transmitting index cases (with [≥]1 PCR/LFD-positive contact) potentially detectable by LFDs over time, accounting for viral load, variant, and symptom status. Findings 4131/75,382 (5.5%) participants were PCR-positive. Sensitivity vs. PCR was 63.2% (95%CI 61.7-64.6%) and specificity 99.71% (99.66-99.74%). Increased viral load was independently associated with being LFD-positive. There was no evidence LFD sensitivity differed between Delta vs. Alpha/pre-Alpha infections, but Omicron infections were more likely to be LFD positive. Sensitivity was higher in symptomatic participants, 68.7% (66.9-70.4%) than in asymptomatic participants, 52.8% (50.1-55.4%). 79.4% (68.6-81.3%) of index cases resulting in probable onward transmission with were estimated to have been detectable using LFDs, this proportion was relatively stable over time/variants, but lower in asymptomatic vs. symptomatic cases. Interpretation LFDs remained able to detect most SARS-CoV-2 infections throughout vaccine roll-out and different variants. LFDs can potentially detect most infections that transmit to others and reduce risks. However, performance is lower in asymptomatic compared to symptomatic individuals. Funding UK Government.


Subject(s)
Severe Acute Respiratory Syndrome
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.21.22281171

ABSTRACT

Objectives Sotrovimab is one of several therapeutic agents that have been licensed to treat people at risk of severe outcomes following COVID-19 infection. However, there are concerns that it has reduced efficacy to treat people with the BA.2 sub-lineage of the Omicron (B.1.1.529) SARS-CoV-2 variant. We compared individuals with the BA.1 or BA.2 sub-lineage of the Omicron variant treated Sotrovimab in the community to assess their risk of hospital admission. Methods We performed a retrospective cohort study of individuals treated with Sotrovimab in the community and either had BA.1 or BA.2 variant classification. Results Using a Stratified Cox regression model it was estimated that the hazard ratios (HR) of hospital admission with a length of stay of two or more days was 1.17 for BA.2 compared to BA.1 (95% CI 0.74-1.86) and for such admissions where COVID-19 ICD-10 codes was recorded the HR was 0.98 (95% CI 0.58-1.65). Conclusion These results suggest that the risk of hospital admission is similar between BA.1 and BA.2 cases treated with Sotrovimab in the community.


Subject(s)
COVID-19
9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.14.22279931

ABSTRACT

BackgroundMonitoring infection trends is vital to informing public health strategy. Detecting and quantifying changes in growth rates can inform policymakers rationale for implementing or continuing interventions aimed at reducing impact. Substantial changes in SARS-CoV-2 prevalence with emergence of variants provides opportunity to investigate different methods to do this. MethodsWe included PCR results from all participants in the UKs COVID-19 Infection Survey between 1 August 2020-30 June 2022. Change-points for growth rates were identified using iterative sequential regression (ISR) and second derivatives of generalised additive models (GAMs). Consistency between methods and timeliness of detection were compared. FindingsOf 8,799,079 visits, 147,278 (1{middle dot}7%) were PCR-positive. Over the time period, change-points associated with emergence of major variants were estimated to occur a median 4 days earlier (IQR 0-8) in GAMs versus ISR, with only 2/48 change-points identified by only one method. Estimating recent change-points using successive data periods, four change-points (4/96) identified by GAMs were not found when adding later data or by ISR; 77% (74/96) of change-points identified by successive GAMs were identified by ISR. Change-points were detected 3-5 weeks after they occurred in both methods but could be detected earlier within specific subgroups. InterpretationChange-points in growth rates of SARS-CoV-2 can be detected in near real-time using ISR and second derivatives of GAMs. To increase certainty about changes in epidemic trajectories both methods could be run in parallel. Running either method in near real-time on different infection surveillance data streams could provide timely warnings of changing underlying epidemiology. FundingUK Health Security Agency, Department of Health and Social Care (UK), Welsh Government, Department of Health (on behalf of the Northern Ireland Government), Scottish Government, National Institute for Health Research.


Subject(s)
COVID-19
10.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.07.14.500063

ABSTRACT

Summary Some COVID-19 patients are unable to clear their infection or are at risk of severe disease, requiring treatment with neutralising monoclonal antibodies (nmAb) and/or antivirals. The rapid roll-out of novel therapeutics means there is limited understanding of the likely genetic barrier to drug resistance. Unprecedented genomic surveillance of SARS-CoV-2 in the UK has enabled a genome-first approach to the detection of emerging drug resistance. Here we report the accrual of mutations in Delta and Omicron cases treated with casirivimab+imdevimab and sotrovimab respectively. Mutations occur within the epitopes of the respective nmAbs. For casirivimab+imdevimab these are present on contiguous raw reads, simultaneously affecting both components. Using surface plasmon resonance and pseudoviral neutralisation assays we demonstrate these mutations reduce or completely abrogate antibody affinity and neutralising activity, suggesting they are driven by immune evasion. In addition, we show that some mutations also reduce the neutralising activity of vaccine-induced serum.


Subject(s)
COVID-19
11.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.13.22275007

ABSTRACT

Background Strategies to reduce antibiotic overuse in hospitals depend on clinicians taking decisions to stop unnecessary antibiotics. There is a lack of evidence on how support clinicians do this effectively. We evaluated a multifaceted behaviour change intervention (ARK) which aims to reduce antibiotic consumption in hospitals by increasing decisions to stop antibiotics at clinical review. Methods We performed a stepped-wedge, hospital-level, cluster-randomised controlled trial using computer-generated sequence randomisation of 39 acute hospitals to 7 calendar-time blocks (12/February/2018–01/July/2019). Co-primary outcomes were monthly antibiotic defined-daily-doses (DDD) per acute/medical admission (organisation-level, superiority) and all-cause 30-day mortality (patient-level, non-inferiority, margin 5%). Clusters were eligible if they admitted non-elective medical patients, could identify an intervention “champion” and provide pre-intervention data from February/2016. Sites were followed up for a minimum of 14 months. Intervention effects were assessed using interrupted time series analyses in each cluster. Overall effects were derived through random-effects meta-analysis, using meta-regression to assess heterogeneity in effects across prespecified factors. Trial registration was ISRCTN12674243 . Findings Adjusted estimates showed a year-on-year reduction in antibiotic consumption (−4.8%, 95%CI: -9.1%,-0.2%, p=0.042) following the ARK intervention. Among 7,160,421 acute/medical admissions, we observed a -2.7% (95%CI: -5.7%,+0.3%, p=0.079) immediate and +3.0% (95%CI: - 0.1%,+6.2%, p=0.060) sustained change in adjusted 30-day mortality. This mortality trend was not related to the magnitude of antibiotic reduction achieved (Spearman’s ρ=0.011, p=0.949). Whilst 90-day mortality odds appeared to increase over time (+3.9%, 95%CI:+0.5%,+7.4%, p=0.023), this was not observed among admissions before COVID-19 onset (+3.2%, 95%CI:-1.5%,+8.2%, p=0.182). Length of hospital stay was unaffected. Interpretation The weak, inconsistent effects of the intervention on mortality are likely to be explained by the COVID-19 pandemic onset during the post-implementation phase. We conclude that the ARK-intervention resulted in sustained, safe reductions in hospital antibiotic use. Funding NIHR Programme Grants for Applied Research, RP-PG-0514-20015. Research in context Evidence before this study Acutely ill patients often need to receive antibiotics before full diagnostic information is available. Consequently, reducing overuse of antibiotics in hospitals requires clinicians to review and where appropriate, stop unnecessary antibiotic prescriptions. Evidence-based tools to support clinicians stop unnecessary antibiotics do not exist. We searched PubMed, with no language or date restrictions, on 31/January/2022 for clinical studies focused on improving antibiotic use for hospitalised adults using the terms “anti-bacterial agents therapeutic use” AND “antibiotic stewardship”. Among the 427 studies found, the great majority were uncontrolled evaluations of different approaches to education, decision support and feedback. These included one before-after study, which found no impact of unsupported clinician-led prescription review. Three small, hospital-level cluster-randomised trials were identified. One evaluated different approaches to feedback, one compared different hospital specialties and one found intense feedback to be effective. All were small and none considered clinical outcomes or sustainability. There is a need for research to deliver proven interventions ready for implementation into practice. Added value of this study We evaluated a multifaceted “Antibiotic Review Kit” (ARK) intervention to support prescribers to appropriately stop antibiotics at clinical review. ARK comprises a prescription decision-aid supported by a brief online training tool, guidance on implementation (including regular data collection and feedback) and a patient information leaflet. We found that the intervention was associated with a sustained reduction in hospital-level antibiotic use overall and of oral and narrow-spectrum antibiotics specifically. Weak trends were observed for 30-day mortality in opposite directions for immediate and sustained impact. Although there was a sustained increase in 90-day mortality after the intervention, this was only seen when analyses included patients admitted after the start of the COVID-19 pandemic. Taken together we conclude that these mortality effects are unrelated to the intervention. Implications of all available evidence The ARK intervention is safe and effective in reducing antibiotic use among adult medical hospital admissions. The tools used are now freely available for adoption into practice.


Subject(s)
COVID-19
12.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22275865

ABSTRACT

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARS-CoV-2. However, the maintenance of such responses - and hence protection from disease - requires careful characterisation. In a large prospective study of UK healthcare workers (PITCH, within the larger SIREN study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZ1222 (Oxford/AstraZeneca) vaccination and following a subsequent BNT162b2 booster vaccination. We make three important observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and B cell responses were better maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels to post second dose levels and broadened neutralising activity against variants of concern including omicron BA.1, alongside further boosting of T cell responses. Thirdly, prior infection maintained its impact driving larger T cell responses compared to never infected people, including after the third dose. In conclusion, the maintenance of T cell responses in time and against variants of concern may account for continued protection against severe disease.


Subject(s)
COVID-19 , Hallucinations
13.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.21.22274025

ABSTRACT

Background: Understanding immunological responses to SARS-CoV-2 vaccinations is integral to the management of SARS-CoV-2. We aimed to investigate determinants of antibody response to the BNT162b2 vaccine. Methods: A cross-sectional analysis of anti-spike binding antibodies in serum samples from healthcare workers after one or two doses. Post-vaccination interval was restricted to [≥]21 days after dose 1, [≥]14 days after dose 2. The primary outcome was anti-S titres with explanatory variables dose, previous infection, dosing interval, age, ethnicity, and comorbidities. Multivariable linear regression was also conducted. Results: Participants (n=5,871) included 3,989 post-dose 1, 1,882 post-dose 2. In SARS-CoV-2 infection naive, 99.65% seroconverted after dose 1 and >99.9% seroconverted after dose 2. Geometric mean anti-S titre in the naive cohort was 75.48 Binding Antibody Units/ml after dose 1, 7,049 BAU/ml after dose 2. Anti-S titres were higher in those with previous infection (2,111 BAU/ml post-dose 1, 16,052 BAU/ml post-dose 2), and increased with time between infection and vaccination: 3 months 1,970 (1,506-2,579) vs 9 months; 13,759 (8,097-23,379). Longer dosing intervals increased antibody response post-dose 2: 11-fold higher with a longer interval (>10 weeks) than those with shorter intervals, across all age-groups. Younger participants had higher mean titres (>2.2-fold higher). Multivariable regression modelling corroborated the above associations, and also found higher titres associated with being female or from an ethnic minority but lower titres among immunocompromised participants. Conclusion: The number of antigen exposures and timing between vaccinations plays a significant role in the magnitude of the post-vaccination antibody response, with implications for long-term protection and post-booster antibody responses.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.14.21267615

ABSTRACT

Abstract Background A rapid increase in cases due to the SARS-CoV-2 Omicron (B.1.1.529) variant in highly vaccinated populations has raised concerns about the effectiveness of current vaccines. Methods We used a test-negative case-control design to estimate vaccine effectiveness (VE) against symptomatic disease caused by the Omicron and Delta variants in England. VE was calculated after primary immunisation with two BNT162b2 or ChAdOx1 doses, and at 2+ weeks following a BNT162b2 booster. Results Between 27 November and 06 December 2021, 581 and 56,439 eligible Omicron and Delta cases respectively were identified. There were 130,867 eligible test-negative controls. There was no effect against Omicron from 15 weeks after two ChAdOx1 doses, while VE after two BNT162b2 doses was 88.0% (95%CI: 65.9 to 95.8%) 2-9 weeks after dose 2, dropping to between 34 and 37% from 15 weeks post dose 2.From two weeks after a BNT162b2 booster, VE increased to 71.4% (95%CI: 41.8 to 86.0%) for ChAdOx1 primary course recipients and 75.5% (95%CI: 56.1 to 86.3%) for BNT162b2 primary course recipients. For cases with Delta, VE was 41.8% (95%CI: 39.4-44.1%) at 25+ weeks after two ChAdOx1 doses, increasing to 93.8% (95%CI: 93.2-94.3%) after a BNT162b2 booster. With a BNT162b2 primary course, VE was 63.5% (95%CI: 61.4 to 65.5%) 25+ weeks after dose 2, increasing to 92.6% (95%CI: 92.0-93.1%) two weeks after the booster. Conclusions Primary immunisation with two BNT162b2 or ChAdOx1 doses provided no or limited protection against symptomatic disease with the Omicron variant. Boosting with BNT162b2 following either primary course significantly increased protection.


Subject(s)
COVID-19
15.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.29.21267006

ABSTRACT

BackgroundUnderstanding the duration and effectiveness of infection and vaccine-acquired SARS-CoV-2 immunity is essential to inform pandemic policy interventions, including the timing of vaccine-boosters. We investigated this in our large prospective cohort of UK healthcare workers undergoing routine asymptomatic PCR testing. MethodsWe assessed vaccine effectiveness (VE) (up to 10-months after first dose) and infection-acquired immunity by comparing time to PCR-confirmed infection in vaccinated and unvaccinated individuals using a Cox regression-model, adjusted by prior SARS-CoV-2 infection status, vaccine-manufacturer/dosing-interval, demographics and workplace exposures. ResultsOf 35,768 participants, 27% (n=9,488) had a prior SARS-CoV-2 infection. Vaccine coverage was high: 97% had two-doses (79% BNT162b2 long-interval, 8% BNT162b2 short-interval, 8% ChAdOx1). There were 2,747 primary infections and 210 reinfections between 07/12/2020 and 21/09/2021. Adjusted VE (aVE) decreased from 81% (95% CI 68%-89%) 14-73 days after dose-2 to 46% (95% CI 22%-63%) >6-months; with no significant difference for short-interval BNT162b2 but significantly lower aVE (50% (95% CI 18%-70%) 14-73 days after dose-2 from ChAdOx1. Protection from infection-acquired immunity showed evidence of waning in unvaccinated follow-up but remained consistently over 90% in those who received two doses of vaccine, even in those infected over 15-months ago. ConclusionTwo doses of BNT162b2 vaccination induce high short-term protection to SARS-CoV-2 infection, which wanes significantly after six months. Infection-acquired immunity boosted with vaccination remains high over a year after infection. Boosters will be essential to maintain protection in vaccinees who have not had primary infection to reduce infection and transmission in this population. Trial registration numberISRCTN11041050


Subject(s)
COVID-19
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.02.21263017

ABSTRACT

BackgroundThe COVID-19 pandemic is rapidly evolving, with emerging variants and fluctuating control policies. Real-time population screening and identification of groups in whom positivity is highest could help monitor spread and inform public health messaging and strategy. MethodsTo develop a real-time screening process, we included results from nose and throat swabs and questionnaires taken 19 July 2020-17 July 2021 in the UKs national COVID-19 Infection Survey. Fortnightly, associations between SARS-CoV-2 positivity and 60 demographic and behavioural characteristics were estimated using logistic regression models adjusted for potential confounders, considering multiple testing, collinearity, and reverse causality. FindingsOf 4,091,537 RT-PCR results from 482,677 individuals, 29,903 (0{middle dot}73%) were positive. As positivity rose September-November 2020, rates were independently higher in younger ages, and those living in Northern England, major urban conurbations, more deprived areas, and larger households. Rates were also higher in those returning from abroad, and working in healthcare or outside of home. When positivity peaked December 2020-January 2021 (Alpha), high positivity shifted to southern geographical regions. With national vaccine roll-out from December 2020, positivity reduced in vaccinated individuals. Associations attenuated as rates decreased between February-May 2021. Rising positivity rates in June-July 2021 (Delta) were independently higher in younger, male, and unvaccinated groups. Few factors were consistently associated with positivity. 25/45 (56%) confirmed associations would have been detected later using 28-day rather than 14-day periods. InterpretationPopulation-level demographic and behavioural surveillance can be a valuable tool in identifying the varying characteristics driving current SARS-CoV-2 positivity, allowing monitoring to inform public health policy. FundingDepartment of Health and Social Care (UK), Welsh Government, Department of Health (on behalf of the Northern Ireland Government), Scottish Government, National Institute for Health Research.


Subject(s)
COVID-19
17.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.06.21261725

ABSTRACT

Quarantining close contacts of individuals infected with SARS-CoV-2 for 10 to 14 days is a key strategy in reducing transmission. However, quarantine requirements are often unpopular, with low adherence, especially when a large fraction of the population has been vaccinated. Daily contact testing (DCT), in which contacts are required to isolate only if they test positive, is an alternative to quarantine for mitigating the risk of transmission from traced contacts. In this study, we developed an integrated model of COVID-19 transmission dynamics and compared the strategies of quarantine and DCT with regard to reduction in transmission and social/economic costs (days of quarantine/self-isolation). Specifically, we compared 10-day quarantine to 7 days of self-testing using rapid lateral flow antigen tests, starting 3 days after exposure to a case. We modelled both incomplete adherence to quarantine and incomplete adherence to DCT. We found that DCT reduces transmission from contacts with similar effectiveness, at much lower social/economic costs, especially for highly vaccinated populations. The findings were robust across a spectrum of scenarios with varying assumptions on the speed of contact tracing, sensitivity of lateral flow antigen tests, adherence to quarantine and uptake of testing. Daily tests would also allow rapid initiation of a new round of tracing from infected contacts.


Subject(s)
COVID-19
18.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.23.21260992

ABSTRACT

Summary Background School-based COVID-19 contacts in England are asked to self-isolate at home. However, this has led to large numbers of missed school days. Therefore, we trialled daily testing of contacts as an alternative, to investigate if it would affect transmission in schools. Methods We performed an open-label cluster randomised controlled trial in students and staff from secondary schools and further education colleges in England ( ISRCTN18100261 ). Schools were randomised to self-isolation of COVID-19 contacts for 10 days (control) or to voluntary daily lateral flow device (LFD) testing for school contacts with LFD-negative contacts remaining at school (intervention). Household contacts were excluded from participation. Co-primary outcomes in all students and staff were symptomatic COVID-19, adjusted for community case rates, to estimate within-school transmission (non-inferiority margin: <50% relative increase), and COVID-19-related school absence. Analyses were performed on an intention to treat (ITT) basis using quasi-Poisson regression, also estimating complier average causal effects (CACE). Secondary outcomes included participation rates, PCR results in contacts and performance characteristics of LFDs vs. PCR. Findings Of 99 control and 102 intervention schools, 76 and 86 actively participated (19-April-2021 to 27-June-2021); additional national data allowed most non-participating schools to be included in the co-primary outcomes. 2432/5763(42.4%) intervention arm contacts participated. There were 657 symptomatic PCR-confirmed infections during 7,782,537 days-at-risk (59.1/100k/week) and 740 during 8,379,749 days-at-risk (61.8/100k/week) in the control and intervention arms respectively (ITT adjusted incidence rate ratio, aIRR=0.96 [95%CI 0.75-1.22;p=0.72]) (CACE-aIRR=0.86 [0.55-1.34]). There were 55,718 COVID-related absences during 3,092,515 person-school-days (1.8%) and 48,609 during 3,305,403 person-school-days(1.5%) in the control and intervention arms (ITT-aIRR=0.80 [95%CI 0.53-1.21;p=0.29]) (CACE-aIRR 0.61 [0.30-1.23]). 14/886(1.6%) control contacts providing an asymptomatic PCR sample tested positive compared to 44/2981(1.5%) intervention contacts (adjusted odds ratio, aOR=0.73 [95%CI 0.33-1.61;p=0.44]). Rates of symptomatic infection in contacts were 44/4665(0.9%) and 79/5955(1.3%), respectively (aOR=1.21 [0.82-1.79;p=0.34]). Interpretation Daily contact testing of school-based contacts was non-inferior to self-isolation for control of COVID-19 transmission. COVID-19 rates in school-based contacts in both intervention and control groups were <2%. Daily contact testing is a safe alternative to home isolation following school-based exposures.


Subject(s)
COVID-19 , Neuromyelitis Optica
19.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.22.21257658

ABSTRACT

Background: The B.1.617.2 COVID-19 variant has contributed to the surge in cases in India and has now been detected across the globe, including a notable increase in cases in the UK. We estimate the effectiveness of the BNT162b2 and ChAdOx1 COVID-19 vaccines against this variant. Methods: A test negative case control design was used to estimate the effectiveness of vaccination against symptomatic disease with both variants over the period that B.1.617.2 began circulating with cases identified based on sequencing and S-gene target status. Data on all symptomatic sequenced cases of COVID-19 in England was used to estimate the proportion of cases with B.1.617.2 compared to the predominant strain (B.1.1.7) by vaccination status. Results: Effectiveness was notably lower after 1 dose of vaccine with B.1.617.2 cases 33.5% (95%CI: 20.6 to 44.3) compared to B.1.1.7 cases 51.1% (95%CI: 47.3 to 54.7) with similar results for both vaccines. With BNT162b2 2 dose effectiveness reduced from 93.4% (95%CI: 90.4 to 95.5) with B.1.1.7 to 87.9% (95%CI: 78.2 to 93.2) with B.1.617.2. With ChAdOx1 2 dose effectiveness reduced from 66.1% (95% CI: 54.0 to 75.0) with B.1.1.7 to 59.8% (95%CI: 28.9 to 77.3) with B.1.617.2. Sequenced cases detected after 1 or 2 doses of vaccination had a higher odds of infection with B.1.617.2 compared to unvaccinated cases (OR 1.40; 95%CI: 1.13-1.75). Conclusions: After 2 doses of either vaccine there were only modest differences in vaccine effectiveness with the B.1.617.2 variant. Absolute differences in vaccine effectiveness were more marked with dose 1. This would support maximising vaccine uptake with two doses among vulnerable groups.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL